DEPARTMENT OF THE NAVY

I SBIR/STTR I RANSITIONS

2019 SPRING

FROM THE DIRECTOR

LINKING THE INNOVATION NETWORK

Tn its 20th year, our ▲ annual Forum for SBIR/ STTR Transition (FST) being held April 10-11, 2019. is an essential link in the Department of Navy's innovation network. Covering 25,000 square feet at the UMass Lowell Tsongas Center in Lowell, Massachusetts, FST promises to be a great opportunity for making connections, engaging in partnerships, and discovering groundbreaking technologies.

In a sense, FST is commencement for our Phase II companies that have participated in the SBIR/STTR Transition Program (STP)—marking the beginning of their life in the

innovation network. The STP prepares companies for technology transition with a combination of training, market research, marketing, product development, transition mentoring, and business development activities that work. In fact, this combination works so well, the Department of the Navy has the metric to prove it. We track those companies that take part in the year-long STP and those who decline to participate. Those who participated in STP from 2006-2017 demonstrated 20% greater commercialization on average.

Scheduled in the same week as FST, we will also hold our

annual Partnering Summit (formerly the Primes Summit) on Monday and Tuesday, April 8-9, at the UMass Lowell Inn & Conference Center. Along with our cosponsor, UMass Lowell Research Institute, we will be collaborating with Naval acquisition, industry, and research institutions in the heart of one of the world's biggest technology clusters.

Adding a new link to the innovation network, the Office of Naval Research will be hosting a two-day workshop called ADAPT (Accelerated Delivery and Acquisition of Prototype Technologies) on April 9-10. ADAPT is a novel approach aimed at finding

non-traditional performers to solve Naval technical challenges and the workshop will feature technology briefs on pre-released technology areas of interest, discussion on proposal process and contracting, and opportunities for oneon-one meetings with subject matter experts. Additional information about the ADAPT Broad Agency Announcement and topics can be found at https://sbir. defensebusiness.org/.

The week of April 8 will highlight a variety of forward-leaning and innovative SBIR/STTR companies already solving Naval challenges and ready to do more to support the Navy and the Marine Corps. We'll have 107 of these companies in attendance at the FST and are expecting senior leadership participation for both the Partnering Summit and the FST this year. Count on great networking and idea-sharing, as well as the beginning of some incredible partnerships. Through a powerful innovation network, the Department of the Navy SBIR/STTR is determined to ensure a technologically advanced Fleet and Forcenow and in the future.

Speed Supports the National Defense Strategy (NDS)

The SBIR/STTR programs are not only about doing good research, they are also about getting capabilities into the hands of our naval warfighters. And they urgently need our help.

As we try to forge relationships to broaden opportunities for inserting technology into existing efforts, we are also working on speeding up the process. We can't wait 10 years to find a solution to help us solve a warfighting challenge that exists right now. And neither should you.

Programs take years to get approved and funded in the Future Year Defense Program (FYDP). The SBIR/STTR

programs, however, provide enormous opportunities to deliver capabilities faster because we can turn inside the budget cycle, two years ahead of the POM. If there is a pressing challenge, and we have an SBIR/STTR company that can address that challenge, we can put them under contract right now! Our Navy Program Managers (PMs) are very nimble at taking advantage of this approach to quickly meet mission needs. PMs mine the database of SBIR/STTR Phase I and Phase II awards (that extend, derive from, or complete the previous SBIR/ STTR award) throughout the government to find relevant SBIR/STTR efforts that they can tap into right now. That's why we have the SBIR/STTR search function on www.navysbir.com.

One of the biggest challenges with transitioning SBIR/STTR technology is the alignment of requirements and funding. Timing is everything—do I have the money to solve the problem

Robert L. Smith (Director DoN SBIR/STTR Programs)

when that problem arises? The STP helps our Phase Il companies align their technology to warfighting requirements and to the timing of available funding to help achieve successful transition. During the fiscal years 2013-2017, the Department of the Navy accounted for 52 percent of all DoD Phase III awards. That's due in large part to STP and FST and a culture that supports transition and helps companies avoid the "valley of death".

The key to taking your SBIR/ STTR-developed technology to the next level is active partnership between the program managers, primes, and other SBIR/STTR participants and supporters. Every one of our "overnight successes" took years built on solid relationships. The potential to strengthen our network is incredible when we bring together so many different members of the ecosystem in one place at one time. Many of you are working on vitally important research and technology

developments to solve warfighting challenges; yet you are unaware that others may be assessing and tackling some of those very same challenges.
Together, we can leverage the network to achieve our common vision—providing our warfighters with the best solutions available.

Sincerely,

Robert L. Smith
Director DON SBIR/STTR

AREA I WATCHES TOPICS TO LEVERAGE ITS SBIR TECHNOLOGY

By Edward Lundquist

Kennesaw, Georgia-based Area I began its SBIR journey in 2011 when it commenced an Air Force-driven SBIR for a fuel cell-powered unmanned air vehicle (UAV). That led to an Air Force SBIR for a tube stored and tube-launched UAV, which resulted in the company's Air-Launched, Tube-Integrated, Unmanned System or ALTIUS; which was part of the Air Force Tactical Off-Board Sensing, or TOBS, to help with surveillance, targeting and battle damage assessment for aircraft like the AC-130 gunship.

In 2014, the Navy issued a topic to launch a UAV with a magnetic anomaly detection (MAD) sensor from a standard sonobuoy tube aboard a maritime patrol aircraft, such as a P-8 Poseidon, P-3 Orion or MH-60 Seahawk. MAD can sense disturbances in the earth's magnetic field caused by large ferrous objects, such as submerged submarines.

According to Area I's Josh Steele, the company saw an opportunity to leverage the technology developed for the Air Force. "We felt we could meet the Navy's solicitation with our existing ALTIUS airframe design, so we could focus on the payload and sensor. We would have to scale down our Air Force prototype to fit inside the sonobuoy tube; but, we already had done a lot of the research and trade studies."

Steele said the Navy program moved at a rapid pace because of the technology Area I had developed for the Air Force SBIR. "It allowed us to very quickly advance our design. We're doing new work with the Navy SBIR; but, we're not inventing an entirely new wheel."

The large MAD gear on the Navy's four-engine turbo-prop Orion--located on a large extended tail that sticks out of the back of the aircraft--must fly close to the surface to detect a submarine. The newer Poseidon is based on a Boeing 737 jet, and is not designed to fly for long periods of time at very low altitudes. Being able to deploy the Area I vehicle, with its small, compact MAD sensor, allows the aircraft to deploy the UAV; while flying at a much higher and more efficient altitude. Area I integrated a magnetometer sensor from another small business; which by comparison, is much smaller than the tail on the Orion-about the size of a pack of gum, and it is sensitive enough to detect submarines while flying at a couple of hundred feet above the ocean.

Steele said the Area I UAV is deployed from the tube and its wings unfold, allowing it to fly over the mission area. The UAV can be deployed individually, or in small groups that communicate with each other to determine the optimal locations and courses to fly to

Area I Watches Topics to Leverage its SBIR Technology ...continued

find and track a submarine. They can cover a broad area, and they have the endurance to remain "on top" of a contact and track it.

Steele said their electric-powered UAVs have their own electro-magnetic signature. "We learned how to reduce the magnetic signature at the assembly and component level to reduce interference, and be able to detect objects in the water. We've reduced the platform's signature to the point the sensor doesn't know it's there. To it, it's a flying MAD sensor."

The company has also developed its vehicles so that they do not require the constant and active piloting by a crew member aboard the aircraft. The sensor operator on the aircraft can upload the

mission and select some basic parameters and the aircraft will self-organize to conduct the task. The operator is then free to do other tasks. The UAVs can be programmed to stay within boundaries or avoid keep-out zones. And, since they are expendable, Area I knows they must be affordable.

By watching the solicitations from the different services, Area I's SBIR effort has blossomed. "It's up to us as the small business to watch for additional topics where we can apply our technology," said Steele. "That's what we did with the Navy in 2014. It's paid off. We now have a Phase III with the Air Force and Army for ALTIUS, and we're working on an SBIR Phase 2.5 with the Navy."

"We see SBIR as an extension of our R&D efforts"

ROLLS-ROYCE OFFERS A MUTUALLY ADVANTAGEOUS RELATIONSHIP WITH SBIR PARTNERS

By Edward Lundquist

Rolls-Royce makes engines and power propulsion equipment for aircraft, ships and vehicles, to include both military and commercial customers. In North America, the company is a major supplier to the U. S. Department of Defense. And, it's a big beneficiary of the SBIR program.

"Like any company, we can only put so much into investment," said Allen B. Barta, the company's U.S. Lead for SBIR/STTR Engagement. "We see SBIR as an extension of our R&D efforts. We can look outside our company and find skills and talent, access to funding, and technologies that we need, and we need to pay attention to that. Small businesses are fantastic to work with. They have a lot of entrepreneurial energy. They move fast, and they're lean in how they go about solving problems. Maybe they can help us today, or possibly enhance our offerings for tomorrow."

According to Barta, working with SBIR companies is a source of innovation and inspiration for people within Rolls-Royce, from seasoned veteran technologists to people who are still in the early stages of their career. "Our people are seeing new solutions or ways we can combine technologies and capabilities to provide more viable products, services or solutions. Working with SBIR partners also provides another way to work with the Navy PMs, and understand their needs, and see the pathways to platforms where this technology might end up."

Barta said the relationship is mutually advantageous. "When we partner with a small company where we might be able to use their technology, it helps them to see our world and how they might better align their activities to be more relevant to a real product or service. And, it helps our people to work outside the walls of our company. Being too focused just on what's happening inside your own company can stifle innovation to some degree."

Because of its many years of successfully working with small businesses, Rolls-Royce can engage with small businesses in the early stages to give them guidance--from applying for the Phase I all the way to Phase II and Phase III transition.

That relationship can pay off. Rolls-Royce acquired one of its SBIR partners in 2013. It's now their high-temperature composites subsidiary, and the company recently invested more than \$30 million in a new facility to manufacture engine components.

"Like other engine companies, we make dual-use products that can go into both military and civil platforms," Barta said. "Some of the development work funded by the Navy today may not find its way into a program of record or onto a platform for several years. But, we're not hemmed into a small market space. We can look at that technology, and we might have a civil or different application where we could use a different source of funding and use it sooner, or now, and make some company investment to bring that

technology along more quickly. And then, when the Navy is ready to bring it back in, we can give them a more mature, capable and affordable technology. We are able to leverage different funding mechanisms; which can be attractive for small businesses."

Networking opportunities

Barta said that Rolls-Royce takes advantage of opportunities like the Forum for SBIR/ STTR Transition (FST) to discover new technologies and solutions, and meet potential partners. "The technologies at the FST cover a broad spectrum of categories. We'll have Rolls-Royce chief engineers and technologists as well as technical leads at the FST from across the company's business units. They'll be scouting the companies and looking to see what might compliment something we have historically done, or offers a better and more cost-effective process. And, when we talk to these companies, we can learn a lot about what they are doing beyond the focus of the SBIR topic. We'll also arrange follow-up meetings to connect with these companies after the conference to get us aligned with the right technologists and opportunities to explore how we can take the best advantage of that technology."

"That's one of the big reasons Rolls-Royce comes to the FST," Barta said. "It allows us to see new and innovative ways of doing things that could accomplish something we do at a lower cost or with broader or more effective customer application."

Even the most successful primes can learn a lot from a small, lean partner. Thinking more broadly helps Roll-Royce find opportunities enabled by SBIR technologies. "When you sit down and really talk to these companies

about the expertise behind their SBIR, you find that they have other capabilities beyond their current applications, and you start to realize that you're tapping into maybe something deeper and broader than you had imagined or that they had envisioned." Barta said.

Rolls-Royce offers small business partners the capability to further advance their technologies that they don't have on their own. This can be very helpful when a finished product is ready to be tested; but, also to evaluate something more basic, to help identify if the idea has merit, or what is needed to make it viable. "We have test rigs, engine assets, and the ability to collect and analyze data. We can also advise them if we think that they're not yet ready for an expensive engine test at this phase of their program test. It could use up a lot of their budget for little gain. We could, however, suggest some things they could prove out in their technology that would be far more valuable with the amount of budget they have, and then work with the Navy customer to identify what might be an appropriate asset for evaluation," Barta said.

For example, Rolls-Royce worked with a small business that had an Army Phase I and II that transitioned to a Navy Phase 2.5. "We were able to test that small company's technology in our facility on an engine provided by the Navy for the test. It became a win-win for everyone. The small business had a technology, the Navy had an engine available, and we had the ability to do the appropriate testing. We combined our abilities to deliver a successful program," Barta said.

Experimenting for success

Corey Nation, the Innovation lead for Rolls-Royce in the U.S., points to a successful effort involving Rolls-Royce interns who were experimenting with small Raspberry Pi computers used to teach programming. "They came up with some prototypes that interfaced really well with a local small business we're working with called SensorHound. That effort resulted in a useful product monitoring system for us to track the location and condition of our containerized engines and components," Nation said.

"We had customer assets—such as containerized engines—that were having some issues where a shipment may have been compromised. But, we also had our own assets that were sometimes being damaged or lost," Nation said. "So we are looking at placing some of these devices on our own assets to track their location and condition."

These small devices have a big job, because there's a lot at stake. "We want to know if large castings get wet; or a box with a quarter million dollars in turbine blades is opened; or a container with high-value machined parts goes missing," Nation said.

"This was originally intended to be a service to our customers; but we are now evolving it into something that helps us with our own supply chain management," Nation said. "It all came out of an engagement with our interns and a local SBIR company."

"When we open our eyes and see what a small business has come up with, it can help us solve a problem that maybe we've been living with and paying for all these years," Nation said. "It's allowed us to think about doing things in ways we hadn't thought about before."

Since connecting at a Defense Innovation Summit, Indiana-based SensorHound has had a mutually beneficial relationship with Rolls-Royce. "We developed our technology with a National Science Foundation Phase I and Phase II, and, in Indiana, they were able get cost-matching funds from the state of up to \$50K for Phase I. An Air Force SBIR has opened the door to further developments as well as a potential opportunity to engage with the Army. Rolls-Royce also provided some funds that helped move it along, and also provided a direct transition path with them," said SensorHound's Matthew Potrawski.

"We've been involved in small, smart devices for the 'Internet of Technology' (IOT) in everything from agricultural sensors to medical devices. Cyber security for IOT devices is our core product. Every device we work with is small and resource constrained, so we have to have very efficient code that can run on a small processor on any kind of device. We learned how to write highly efficient code with a very small footprint that we could use to detect if the devices are running correctly and doing what they were supposed to be doing," said Potrawski.

"Rolls-Royce saw a need for a way to monitor the condition of their product while it's being stored or shipped before it is installed," said Potrawski. "But, it had to be secure."

"During the Air Force SBIR, we identified two Army and two Air Force partners interested in working with us on the next steps of this effort to see how our technology can help track components and sub-assemblies from aircraft and munitions. The SBIR evaluated our dual-purpose technologies to determine how the commercial solution could be adapted for military use," Potrawski said.

NAVY FY 18 PHASE III AWARDS TOTAL \$717,216,188

FIRM (NAVAIR)	CONTRACT #	TOPIC	AMOUNT
Aculight Corporation	N6893612C0212	N02-139	\$266,000
Adaptive Methods, Inc	N6833515G0018	N02-152	\$2,095,000
Advanced Avionics Incorporated	N6833515G0013	N08-008	\$6,172,131
Aerospace Mass Properties Analysis, Inc. (AMPA	C) N6833518C0180	N093-164	\$3,240,151
Aptima, Inc.	N6134018C0020	N08-T004	\$1,919,651
Architecture Technology Corporation	N6833516C0255	N091-037	\$309,569
Area I, Inc	N6833518C0004	N141-014	\$487,098
Arete Associates	N6833515G0016	N06-002	\$1,370,000
Bihrle Applied Research, Inc.	N6833517C0372	N08-005	\$12,780
C3I, Inc.	N6833517G0011	N04-081	\$427,063
Chesapeake Technology International Corporat		N151-021	\$174,755
CornerTurn LLC	N6833518D0002	N101-018	\$1,328,422
Creare LLC	N6833518C0124	N06-T023	\$6,814,181
Creare LLC	N6833518D0067	N06-T023	\$3,767,604
Creare LLC	N6833516C0169	N08-014	\$852,550
DDL Omni Engineering, LLC	N6833514G0057	N00-123	\$8,845,260
DESIGN INTERACTIVE, INC	N6134018C0036	OSD11-H13	\$334,534
Electro Standards Laboratories	N6833517C0082	N02-133	\$1,411,618
Electrodynamics Associates, Inc.	N6833515C0079	N112-116	\$89,714
Frontier Technology Inc.	N6833517G0024	OSD08-CR3, OSD08-T003	\$2,304,152
Frontier Technology Inc.	N6833516G0014	OSD07-CR4, N132-096, N07-010	\$15,442,145
Frontier Technology Inc. Fuse Integration, Inc.	N6833517G0025	MDA09-021	\$2,881,598
	N6833518C0144	N151-015	\$2,999,483
GBL Systems Corporation Global Engineering and Materials, Inc.	N6833515G0026	N04-174	\$3,716,360
Hydronalix, Inc	N6833516G0012	N121-042	\$770,000
Information Systems Laboratories, Inc.	N6833514G0039	N102-182	\$2,835,201 \$2,312,685
Insitu Group Inc	N6833518C0143	N102-140	
International Association of Virtual Org., Inc.	N6833516G0046	N03-138	\$58,609,870 \$99,955
KCF Technologies, Inc	N6893614D0019	N05-017	\$334,987
Kennon Products, Inc	N6833517C0337 N6833518C0145	N08-006	\$334,987 \$2,163,425
KOR Electronics	N6833518C0145 N6833517G0017	N06-016 N06-036	\$2,163,423
Lambda Science, Inc.	N6833517G0017 N6833515G0033	N06-123	\$1,147,100
LOGIS-TECH, inc.	N0001916P1000	N90-085	\$28,056
Metis Design Corporation	N6833517C0027	N10A-T042	\$132,294
Monterey Technologies, Inc.	N0002417C5244	A03-070	\$226,000
MZA Associates Corporation	N6893618G0002	N091-009	\$2,827,746
Navmar Applied Sciences Corporation	N6833514G0040	N04-266/N08-02/,3; N08-00,9;	\$2,027,7 TO
Travilla Applica Sciences corporation	1100333140040	AF083-00,6; N92-017 - N94-178	\$3,963,842
Navmar Applied Sciences Corporation	N6833510G0026	N92-170, N94-178, N04-237	\$314,152
North Star Scientific Corporation	N6833518C0171	N06-125	\$2,420,502
Oceanit Laboratories, Inc.	N6833516G0028	N103-205	\$2,383,509
Physical Optics Corporation	N6833516C0085	N092-148	\$2,467,789
Physical Optics Corporation	N6833516D0027	N121-041	\$12,264,381
Physical Optics Corporation	N6833517G0032	N102-129, N152-096, N152-096	\$7,865,358
Physical Optics Corporation	N0001915C0039	N05-004	\$1,140,599
Radiation Monitoring Devices, Inc.	N6833516C0083	N07-005	\$601,887
RDA Inc.	N6833514G0003	N98-035	\$4,238,669
REYNOLDS SYSTEMS, INC.	N6893613D0020	N96-061	\$307,827
Science & Applied Technology Inc.	N0001917C0005	N90-074	\$210,822,576
Science & Applied Technology Inc.	N0001917G0011	N90-074	\$41,146,990
Scientific Systems Company, Inc	N6833515G0030	N112-127	\$1,825,000
SensorMetriX	N6833516C0081	N121-044	\$284,761
SensorMetriX	N6833517C0260	N121-044	\$200,676
Signal Systems Corporation	N6833515G0032	N101-005	\$2,794,267
Technical Data Analysis, Inc.	N6833518C0146	N08-006	\$2,086,270
Toyon Research Corp.	N6833517G0026	N111-016	\$3,840,296
TRITON SYSTEMS, INC.	N6833515G0031	N131-016	\$686,697
Vista Research Inc.	N6833514C0353	N91-165	\$3,666,633
Zivko Aeronautics, Inc.	N0042115C0051	N01-139	\$1,503,928
NAVAIR TOTAL			\$468,502,952
FIRM (NAVSEA)	CONTRACT #	TOPIC	AMOUNT
3 Phoenix, Inc.	N0002413C6264	N04-138	\$13,324,280
3 Phoenix, Inc.	N0002411C6287	N07-070, N06-138	\$2,573,344
3 Phoenix, Inc.	N6339416C0016	N04-138	\$2,320,243
Accipiter Systems, Inc.	N0002416C4049	N121-070	\$100,000
Adaptive Methods, Inc	N0002415C5252	N01-127, N03-146, N99-224	\$5,080,000

FIRM (NAVSEA)	CONTRACT #	TOPIC	AMOUNT
Adaptive Methods, Inc	N0002415C5220	1100 100/1105 011/1105 015	\$3,212,603
Adaptive Technologies, Inc.	N0002412C6311	N04-065	\$11,089,547
Aptima, Inc.	N0017818D9003	N08-111	\$984,482 \$16,618,453
Arete Associates	N6133118D0012 N6133111C0007	N06-013	\$9,435,207
Arete Associates Arete Associates	N6133111C0007 N0002415C4051	N96-150 N122-141	\$1,144,414
ASSETT, Incorporated	N0002413C4031	N05-149	\$2,246,764
Colorado Engineering Inc.	N0002418C4009	N151-057	\$2,909,664
Dragonfly Pictures, Inc.	N0002417C4011	N131-039	\$478,080
Frontier Technology Inc.	N6339417D0003	N07-010	\$1,620,412
Infinia Technology Corporation	N6554014D0016	N091-051	\$25,725
Innovative Defense Technologies	N0002418C4008	N05-163	\$2,428,845
Innovative Defense Technologies	N0002417G4115	N05-163	\$5,600,055
L-3 Chesapeake Sciences Corporation	N0002415C6275	N05-125	\$9,762,441
L-3 Chesapeake Sciences Corporation	N6660416D0845	N95-209, N05-147, N03-117, N91-130	\$4,654,975
Materials Sciences Corporation	N6554015D0011	N05-054	\$894,449
Mide Technology Corporation	N6449816P5041	N04-073	\$356,623
Mide Technology Corporation	N6449817D0013	N04-073	\$633,325 \$2,529,770
Mikros Systems Corporation	N6339416D0018	N02-039	\$1,841,693
Mikros Systems Corporation Progeny Systems Corporation	N0016417DWP00 N0002418C6265	N02-039 N96-278	\$12,244,799
Progeny Systems Corporation Progeny Systems Corporation	N0002418C6265 N0002418C4005	N96-278 N08-173, OSD05-NC3, N091-037	\$2,702,433
Progeny Systems Corporation Progeny Systems Corporation	N0002418C4003	N131-025	\$909,964
Progeny Systems Corporation	N0002418C4011	N00-049, N96-274, N96-278 & N98-122	
Progeny Systems Corporation	N0002414C5209	N96-278	\$8,164,794
Progeny Systems Corporation	N0002413C6283	N03-048	\$2,599,883
Progeny Systems Corporation	N0002415C4050	N98-115	\$1,299,699
Progeny Systems Corporation	N0002411C6296	N96-278	\$404,000
Progeny Systems Corporation	N0025317D0002	N05-065	\$51,437
Progeny Systems Corporation	N0002418C6410	N96-278	\$40,601,413
Progeny Systems Corporation	N0002418C4002	N02-024	\$2,949,889
Progeny Systems Corporation	N0002418C4012	N092-139	\$2,934,989
Rite-Solutions	N0002416C6422	N05-149	\$974,540
SEA CORP	N6660411D0558	N95-208	\$12,997 \$2,972,424
SeaLandAire Technologies, Inc.	N0002418C4006	N121-054	\$2,319,529
Sedna Digital Solutions, LLC Seemann Composites, Inc.	N0002413C6272 N6554015D0015	N05-059 SOCOM96-002	\$4,904,708
SimVentions, Inc.	N0017815D3001	N05-053	\$887,079
Sonatech, Inc.	N6133116C0008	N04-051	\$2,158,760
The Consulting Network, Inc.	N0002413C5207	N01-150	\$1,617,247
NAVSEA TOTAL			\$213,328,927
FIRM (ONR)	CONTRACT #	TOPIC	AMOUNT
Arete Associates	N0001413C0131	N07-079	\$164,940
BlackBox Biometrics, Inc.	N0001418C2020	N123-152	\$86,020
Commonwealth Computer Research, Inc.	N0001416C1005	N132-135	\$572,502
Commonwealth Computer Research, Inc.	N0001416C1022	N132-135	\$500,000
Continuum Dynamics, Inc.	N0001414C0014	N07-042	\$147,234
HS Owen LLC	N0001416C3067	N07-139	\$130,000 \$103,157
NextGen Aeronautics	N0001414C0028	N10A-T031	\$4,628,017
Progeny Systems Corporation Weidlinger Associates, Inc.	N0001417D1001 N0001416C3084	N08-077 N08-191	\$193,238
ONR TOTAL	110001416C3084		\$6,525,108
ONR TOTAL FIRM (SPAWAR)	CONTRACT #	TOPIC	AMOUNT
Basic Commerce and Industries Inc.	N6600115D0061	N06-072	\$511,649
Beacon Interactive Systems	N0003918C0034	N05-160	\$930,000
L-3 Chesapeake Sciences Corporation	N0003913C0028	N95-209	\$115,000
Makai Ocean Engineering, Inc.	N0003909D0134	N99-171	\$131,353
North Star Scientific Corporation	N6833518C0021	N06-125	\$11,871,576
Progeny Systems Corporation	N0003916D0006	N121-103	\$6,420,226
Progeny Systems Corporation	N6523616D8013	N96-273	\$4,279,278
Scalable Network	N6600117D5201	A04-132	\$1,599,746
Scientific Solutions, Inc.	N0003914C0024	N02-207/1	\$614,348
SPAWAR TOTAL	CONTRACT	TODIC	\$26,473,175
FIRM (MCSC)	CONTRACT#	TOPIC	AMOUNT
	NACTO E 41 0 D 0000		
Corvid Technologies, LLC	M6785418D0008	A09-051	\$330,973
Corvid Technologies, LLC FIRST RF CORPORATION MCSC TOTAL	M6785418D0008 N6833517G0050	N06-106	\$330,973 \$2,055,053 \$2,386,026

UPCOMING EVENTS

May 6 - 8	Sea-Air-Space http://www.seaairspace.org/	National Harbor, MD
May 14-16	ASNE Mega Rust http://www.navalengineers.org/Symposia/MegaRust-2019	Portsmouth, VA
May 14-16	Naval Submarine League Submarine Technology Symposium https://www.navalsubleague.org/events/submarine-technology-symposium	Laurel MD /
May 20-23	SOFIC http://www.sofic.org/	Tampa, FL
May 22-23	Military Virtual Training & Simulation Summit http://milsim.dsigroup.org/	Alexandria, VA
Jun 17-19	SBIR/STTR Spring Innovation Conference https://www.techconnectworld.com/SBIRSpring2019/	Boston, MA
Jun 18-20	ASNE Technology Systems & Ships http://www.navalengineers.org/Symposia/Technology-Systems-and-Ships-2	Washington, DC
Jun 24-27	NSMMS & CRASTE https://usasymposium.com/space/2019/default.php	Henderson, NV
Jul 24-26	Navy Gold Coast https://www.navygoldcoast.org/	San Diego, CA
Aug. 19-23	TechNet Augusta https://events.afcea.org/Augusta19/public/enter.aspx	Augusta, GA

